Paramus App Store

Applications, Datasets, AI Models and Computational Models.

The Paramus App Store is a curated portfolio of HPC applications, AI models, datasets, and local LLMs for computational chemistry. All packages run on Paramus Chemistry OS, a Windows-based on-premise platform providing local compute power for demanding simulations. A subset of functionality is also available via Paramus Cloud, though the full App Store requires local hardware.

*) We care deeply about legal compliance, and if you discover a license violation, please inform us at support@paramus.ai. We check on user registration, if the required licenses are present, otherwise you only get the free packages (which is still a lot). We are working on a central registration system with different vendors.

Computing Applications (HPC) (33)

Computing Applications (HPC)

HPC enables scalable simulation, modeling, and analysis of chemical systems. In quantum chemistry (QC), HPC is crucial for performing accurate electronic structure calculations at high theory levels, enabling reliable predictions for molecular design and reactivity.

Language Models (LLM) (3)

Language Models (LLM)

Running large language models locally is a statement of independence: data stays private, inference remains under full control, and chemistry does not leave the laboratory.

The price is: speed. Today it is painfully slow. But it works.

AI Models (8)

AI Models

These models are one-click installable programs following the Paramus AI Runtime Specification.

Datasets (12)

POLY / Polymer

COMP / Quantum

INOR / Material Science

ANYL / Analytics

References (44)

References

  • [1] OpenMM: Eastman, P. et al. OpenMM 7: Rapid development of high performance algorithms for molecular dynamics. PLOS Comput. Biol. 13, e1005659 (2017). DOI:10.1371/journal.pcbi.1005659
  • [2] Packmol: Martinez, L. et al. PACKMOL: A package for building initial configurations for molecular dynamics simulations. J. Comput. Chem. 30, 2157-2164 (2009). DOI:10.1002/jcc.21224
  • [3] NAMD: Phillips, J.C. et al. Scalable molecular dynamics on CPU and GPU architectures with NAMD. J. Chem. Phys. 153, 044130 (2020). DOI:10.1063/5.0014475
  • [4] GROMACS: Abraham, M.J. et al. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1-2, 19-25 (2015). DOI:10.1016/j.softx.2015.06.001
  • [5] GAMESS: Schmidt, M.W. et al. General Atomic and Molecular Electronic Structure System. J. Comput. Chem. 14, 1347-1363 (1993). DOI:10.1002/jcc.540141112
  • [6] NWChem: Valiev, M. et al. NWChem: A comprehensive and scalable open-source solution for large scale molecular simulations. Comput. Phys. Commun. 181, 1477-1489 (2010). DOI:10.1016/j.cpc.2010.04.018
  • [7] AmberTools: Case, D.A. et al. AmberTools. J. Chem. Inf. Model. 63, 6183-6191 (2023). DOI:10.1021/acs.jcim.3c01153
  • [8] CHARMM: Brooks, B.R. et al. CHARMM: The Biomolecular Simulation Program. J. Comput. Chem. 30, 1545-1614 (2009). DOI:10.1002/jcc.21287
  • [9] CP2K: Kuhne, T.D. et al. CP2K: An electronic structure and molecular dynamics software package. J. Chem. Phys. 152, 194103 (2020). DOI:10.1063/5.0007045
  • [10] ORCA: Neese, F. The ORCA program system. WIREs Comput. Mol. Sci. 12, e1606 (2022). DOI:10.1002/wcms.1606
  • [11] LAMMPS: Plimpton, S. Fast Parallel Algorithms for Short-Range Molecular Dynamics. J. Comput. Phys. 117, 1-19 (1995). DOI:10.1006/jcph.1995.1039
  • [12] PSI4: Smith, D.G.A. et al. Psi4 1.4: Open-Source Software for High-Throughput Quantum Chemistry. J. Chem. Phys. 152, 184108 (2020). DOI:10.1063/5.0006002
  • [13] PrexSyn: Luo, S. & Coley, C.W. Synthesizability-Constrained Generative Molecular Design. arXiv:2512.00384 (2024). DOI:10.48550/arXiv.2512.00384
  • [14] AiZynthFinder: Genheden, S. et al. AiZynthFinder: a fast, robust and flexible open-source software for retrosynthetic planning. J. Cheminform. 12, 70 (2020). DOI:10.1186/s13321-020-00472-1
  • [15] OpenModelica: Fritzson, P. et al. The OpenModelica Integrated Environment for Modeling, Simulation, and Model-Based Development. Modeling, Identification and Control. 41(4), 241-295 (2020). DOI:10.4173/mic.2020.4.1
  • [16] Reaktoro: Leal, A.M.M. Reaktoro: An open-source unified framework for modeling chemically reactive systems (2015). https://reaktoro.org
  • [17] BOSS: Jorgensen, W.L.; Tirado-Rives, J. Molecular modeling of organic and biomolecular systems using BOSS and MCPRO. J. Comput. Chem. 26, 1689-1700 (2005). DOI:10.1002/jcc.20297
  • [18] ASE: Larsen, A.H. et al. The Atomic Simulation Environment – A Python library for working with atoms. J. Phys.: Condens. Matter 29, 273002 (2017). DOI:10.1088/1361-648X/aa680e
  • [19] BoFire: BASF Digital Solutions GmbH. BoFire: Bayesian Optimization Framework for Industrial Research and Engineering. https://github.com/experimental-design/bofire
  • [20] LigParGen: Dodda, L.S. et al. LigParGen web server: an automatic OPLS-AA parameter generator for organic ligands. Nucleic Acids Res. 45, W331-W336 (2017). DOI:10.1093/nar/gkx312
  • [21] MDAnalysis: Michaud-Agrawal, N. et al. MDAnalysis: A Toolkit for the Analysis of Molecular Dynamics Simulations. J. Comput. Chem. 32, 2319-2327 (2011). DOI:10.1002/jcc.21787
  • [22] MOPAC: Stewart, J.J.P. Optimization of parameters for semiempirical methods VI. J. Mol. Model. 19, 1-32 (2013). DOI:10.1007/s00894-012-1667-x
  • [23] Multiwfn: Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580-592 (2012). DOI:10.1002/jcc.22885
  • [24] Open Babel: O’Boyle, N.M. et al. Open Babel: An open chemical toolbox. J. Cheminform. 3, 33 (2011). DOI:10.1186/1758-2946-3-33
  • [25] PySCF: Sun, Q. et al. PySCF: the Python-based simulations of chemistry framework. WIREs Comput. Mol. Sci. 8, e1340 (2018). DOI:10.1002/wcms.1340
  • [26] RMG: Gao, C.W. et al. Reaction Mechanism Generator: Automatic construction of chemical kinetic mechanisms. Comput. Phys. Commun. 203, 212-225 (2016). DOI:10.1016/j.cpc.2016.02.013
  • [27] Soar: Laird, J.E. The Soar Cognitive Architecture. MIT Press (2012). ISBN:978-0262122962
  • [28] Tinker: Rackers, J.A. et al. Tinker 8: Software Tools for Molecular Design. J. Chem. Theory Comput. 14, 5273-5289 (2018). DOI:10.1021/acs.jctc.8b00529
  • [29] xTB: Bannwarth, C. et al. GFN2-xTB – An Accurate and Broadly Parametrized Self-Consistent Tight-Binding Quantum Chemical Method. J. Chem. Theory Comput. 15, 1652-1671 (2019). DOI:10.1021/acs.jctc.8b01176
  • [30] OpenFOAM: Weller, H.G. et al. A tensorial approach to computational continuum mechanics using object-oriented techniques. Computers in Physics. 12, 620-631 (1998). DOI:10.1063/1.168744
  • [31] OpenQBMM: Passalacqua, A. et al. An open-source quadrature-based population balance solver for OpenFOAM. Chemical Engineering Science. 176, 306-318 (2018). DOI:10.1016/j.ces.2017.10.043
  • [32] DWSIM: Wagner, D. “DWSIM – An Open-Source Chemical Process Simulator” https://dwsim.org/
  • [33] Code_Saturne: Archambeau, F. et al. Code_Saturne: A Finite Volume Code for the computation of turbulent incompressible flows. International Journal on Finite Volumes. 1(1), 1-62 (2004).
  • [34] Ether0:q2_k: Narayanan, S.M. et al. Training a Scientific Reasoning Model for Chemistry. arXiv:2506.17238 (2025). DOI:10.48550/arXiv.2506.17238
  • [35] Llama 3.2:1b: Meta AI. Llama 3.2 1B (1.23-billion-parameter multilingual language model), released 25 September 2024, https://huggingface.co/meta-llama/Llama-3.2-1B
  • [36] DeepSeek R1:8b: DeepSeek-AI, Guo, D., Yang, D., Zhang, H., et al. DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning. arXiv:2501.12948 (2025). DOI:10.48550/arXiv.2501.12948
  • [37] AIMNet2: Anstine, D.M.; Isayev, O. AIMNet2: A Neural Network Potential to Meet your Neutral, Charged, Organic, and Elemental-Organic Needs. J. Phys. Chem. A (2023). DOI:10.1021/acs.jpca.2c06685
  • [38] MACE: Batatia, I. et al. MACE: Higher Order Equivariant Message Passing Neural Networks for Fast and Accurate Force Fields. NeurIPS (2022). DOI:10.48550/arXiv.2206.07697
  • [39] ORB: Rhodes, B. et al. Orb-v3: atomistic simulation at scale. arXiv:2504.06231 (2025).
  • [40] TransPolymer: Xu, C.; Wang, Y.; Barati Farimani, A. TransPolymer: a Transformer-based language model for polymer property predictions. npj Computational Materials 9, 64 (2023). DOI:10.1038/s41524-023-01009-9
  • [41] PolyNC: Qiu, H.; Liu, L.; Qiu, X.; Dai, X.; Ji, X.; Sun, Z.-Y. PolyNC: a natural and chemical language model for unified polymer properties prediction. Chemical Science (2024). DOI:10.1039/D3SC05079C
  • [42] PolyTAO: Qiu, H.; Sun, Z.-Y. On-Demand Reverse Design of Polymers with PolyTAO. npj Computational Materials 10, 273 (2024). DOI:10.1038/s41524-024-01466-5
  • [43] Polyply: Grunewald, F.; Alessandri, R.; Kroon, P.C.; Monticelli, L.; Souza, P.C.T.; Marrink, S.J. Polyply: a python suite for facilitating simulations of (bio-) macromolecules and nanomaterials. Nature Communications 13, 68 (2022). DOI:10.1038/s41467-021-27627-4
  • [44] MatterSim: Yang, H. et al. MatterSim: A Deep Learning Atomistic Model Across Elements, Temperatures and Pressures. arXiv:2405.04967 (2024). https://arxiv.org/abs/2405.04967

Monetize Without Losing Control

Paramus.ai provides a secure marketplace enabling external vendors to monetize their chemistry applications, AI models, and datasets with full cost carry-over and transparent revenue models. Intellectual property remains fully protected; all packages run within the customer’s local infrastructure.

Publish Your Work

Paramus acts as a distribution and licensing platform for HPC applications, AI models, datasets, and LLM packages. Vendors gain access to a qualified R&D audience across academia and industry without operational overhead.

Scroll to Top